Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Journal
Document Type
Year range
1.
Chaos ; 32(6): 063127, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1921866

ABSTRACT

The slogan "nobody is safe until everybody is safe" is a dictum to raise awareness that in an interconnected world, pandemics, such as COVID-19, require a global approach. Motivated by the ongoing COVID-19 pandemic, we model here the spread of a virus in interconnected communities and explore different vaccination scenarios, assuming that the efficacy of the vaccination wanes over time. We start with susceptible populations and consider a susceptible-vaccinated-infected-recovered model with unvaccinated ("Bronze"), moderately vaccinated ("Silver"), and very-well-vaccinated ("Gold") communities, connected through different types of networks via a diffusive linear coupling for local spreading. We show that when considering interactions in "Bronze"-"Gold" and "Bronze"-"Silver" communities, the "Bronze" community is driving an increase in infections in the "Silver" and "Gold" communities. This shows a detrimental, unidirectional effect of non-vaccinated to vaccinated communities. Regarding the interactions between "Gold," "Silver," and "Bronze" communities in a network, we find that two factors play a central role: the coupling strength in the dynamics and network density. When considering the spread of a virus in Barabási-Albert networks, infections in "Silver" and "Gold" communities are lower than in "Bronze" communities. We find that the "Gold" communities are the best in keeping their infection levels low. However, a small number of "Bronze" communities are enough to give rise to an increase in infections in moderately and well-vaccinated communities. When studying the spread of a virus in dense Erdos-Rényi and sparse Watts-Strogatz and Barabási-Albert networks, the communities reach the disease-free state in the dense Erdos-Rényi networks, but not in the sparse Watts-Strogatz and Barabási-Albert networks. However, we also find that if all these networks are dense enough, all types of communities reach the disease-free state. We conclude that the presence of a few unvaccinated or partially vaccinated communities in a network can increase significantly the rate of infected population in other communities. This reveals the necessity of a global effort to facilitate access to vaccines for all communities.


Subject(s)
COVID-19 , Pandemics , COVID-19/epidemiology , COVID-19/prevention & control , Diffusion , Humans , Pandemics/prevention & control , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL